Iklan

Search Engine

Custom Search
Showing posts with label rise. Show all posts
Showing posts with label rise. Show all posts

Sunday, June 5, 2016

High Temperatures In Arctic

0-2000 m Global Ocean Heat Content
Ocean heat content is rising, as illustrated by the image on the right. Where the sea ice declines, this is causing high air temperatures in the Arctic.

This year (from January to April 2016) on the Northern Hemisphere, oceans were 0.85°C or 1.53°F warmer than the 20th century average.

The image below illustrates that temperatures look set to be high in Siberia for the coming week. The panel on the right shows anomalies at the top end of the scale in Eastern Siberia on June 5, 2016, while the panel on the right shows a forecast for June 12, 2016.


These high air temperatures are causing feedbacks that are in turn further speeding up warming in the Arctic.

This is illustrated by the images below. The image directly below shows temperatures in Eastern Siberia as high as 29.5°C (85°F) on June 5, 2016, at a location close to the coast of the Arctic Ocean (green circle).


High air temperatures come with increased risk of wildfires, as illustrated by the image below showing carbon monoxide levels as high as 2944 ppb on June 4, 2016 (at green circle).


The satellite image below zooms into the area with these high carbon monoxide readings, showing wildfires on Kamchatka Peninsula on June 3, 2016.


High air temperatures in the Arctic are very worrying, as they can trigger a number of important feedbacks, including:
  • Changes to Jet Streams. As the Arctic warms more rapidly than the rest of Earth, changes are occurring to the jet streams. As a result, winds can increasingly bring hot air far to the north, resulting in further loss of the Arctic snow and ice cover, in turn further warming up the Arctic.
  • Warmer Rivers. High air temperatures cause warming of the water of rivers that end up in the Arctic Ocean, thus resulting in additional sea ice decline and warming of the Arctic Ocean all the way down to the seabed.
  • Wildfires. High air temperatures set the scene for wildfires that emit not only greenhouse gases such as carbon dioxide and methane, but also pollutants such as carbon monoxide (that depletes hydroxyl that could otherwise break down methane) and black carbon (that when settling on ice causes it to absorb more sunlight).
  • Soil destabilization. Heatwaves and droughts destabilize the soil. Soil that was previously known as permafrost, was until now held together by ice. As the ice melts, organic material in the soil starts decomposing, resulting in emissions of methane and carbon dioxide, while the soil becomes increasingly vulnerable to wildfires.
  • Buffer Loss. Arctic snow and ice cover acts as a buffer, absorbing heat that in the absence of this buffer will have to be absorbed by the Arctic Ocean.
  • Albedo Change. Arctic snow and ice cover also make that more sunlight is reflected back into space. In the absence of this cover, the Arctic will have to absorb more heat.

How rapidly can things eventuate?

Professor Peter Wadhams, head of the Polar Ocean Physics Group at Cambridge University, says: “My prediction remains that the Arctic ice may well disappear, that is, have an area of less than one million square kilometres for September of this year.” Warming due to Arctic snow and ice loss may well exceed 2 W per square meter, i.e. it could more than double the net warming now caused by all emissions by people of the world, Peter Wadhams calculated in 2012.

Peter Wadhams further co-authored a study that calculated that methane release from the seafloor of the Arctic Ocean could yield 0.6°C warming of the planet in 5 years (see video interview of Thom Hartmann with Peter Wadhams below).


The two feedbacks mentioned by Peter Wadham (albedo and seafloor methane) are are depicted in the image below.

for further discussion, see the feedbacks page
The combined global temperature rise over the next decade due to these two feedbacks (albedo and seafloor methane) alone may be 0.4°C or 0.72°F for a low-rise scenario and may be 2.7°C or 4.9°F for a high-rise scenario. Additionally, as temperatures rise, further feedbacks will kick in more strongly, further accelerating the rise in temperature, as discussed in earlier posts such as this one.

In total, warming could exceed 10°C (18°F) within one decade, assuming that no geoengineering will take place within a decade, as discussed in earlier posts such as this one.

The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan.

Links

- Feedbacks in the Arctic
http://arctic-news.blogspot.com/p/feedbacks.html

- East Siberian Heatwave
http://arctic-news.blogspot.com/2015/07/east-siberian-heat-wave.html

- Wildfire Danger Increasing
http://arctic-news.blogspot.com/2016/05/wildfire-danger-increasing.html

- Albedo changes in the Arctic
http://arctic-news.blogspot.com/2012/07/albedo-change-in-arctic.html

- Three kinds of warming in the Arctic
http://arctic-news.blogspot.com/2016/02/three-kinds-of-warming-in-arctic.html

- Arctic could become ice-free for first time in more than 100,000 years, claims leading scientist
http://www.independent.co.uk/environment/climate-change/arctic-could-become-ice-free-for-first-time-in-more-than-100000-years-claims-leading-scientist-a7065781.html

- Greenhouse gas levels and temperatures keep rising
http://arctic-news.blogspot.com/2016/01/greenhouse-gas-levels-and-temperatures-keep-rising.html

- Arctic Methane Release: "Economic Time Bomb"
http://arctic-news.blogspot.com/2013/07/arctic-methane-release-economic-time-bomb.html

- February Temperature
http://arctic-news.blogspot.com/2016/03/february-temperature.html

- Ten Degrees Warmer In A Decade?http://arctic-news.blogspot.com/2016/03/ten-degrees-warmer-in-a-decade.html

- Climate Plan
http://arctic-news.blogspot.com/p/climateplan.html


Saturday, May 28, 2016

How Much Warming Have Humans Caused?

How much did temperatures rise?

Differences in baseline (reference period) can result in dramatic differences in temperature rise. The U.K. Met Office HadCRUT4 dataset typically presents temperature anomalies relative to a 1961-1990 baseline. NASA typically uses a 1951-1980 baseline, but the NASA website allows for different baselines to be selected. When selecting a 1961-1990 baseline, temperatures over the past half year were 1.05°C (1.89°F) higher than this baseline, as shown by the NASA map in the left panel of the image below. As the map in the right panel of the image below shows, when compared to 1890-1910, temperatures have risen by 1.48°C (or 2.664°F).


A polynomial trend can reduce variability such as caused by volcanoes and El Niño events. The graph below was created with the NASA L-OTI monthly mean global surface temperature anomaly, which has a 1951-1980 baseline, and then with 0.29°C added, which makes the anomaly 0°C in the year 1900 for the added polynomial trend.



This gives an idea of how much temperatures have risen since the year 1900, with a rise for both February and March 2016 showing up that was more than 1.5°C, as also illustrated by the image below. The trend further points at temperature anomalies that will be more than 1.5°C within a decade and more than 2°C soon thereafter.



Historical Temperatures


To calculate by how much warming humans have caused since pre-industrial times, we need to go back further than 1900. The graph below shows that carbon dioxide concentrations have gone up and down between roughly 180 ppm and 280 ppm over the past 800,000 years and did recently reach a peak of 411 ppm (peak hourly average on May 11, 2016).


The graph below, from an earlier post, shows how in the past, over the past 420,000 years, temperatures (and levels of CO2 and CH4) have gone up and down by some 10°C, in line with the Milankovitch cycles.


Historically, carbon dioxide rises of 100 ppm have gone hand in hand with temperature rises of some 10°C. The recent rise in carbon dioxide concentrations is a 131 ppm rise (from some 280 ppm to 411 ppm). The rise in methane concentrations is even steeper. Could we therefore expect a temperature rise of more than 10°C to happen, and if so how soon could this eventuate? As described below, warming caused by humans could result in a temperature rise of more than 10°C (18°F) within a decade.

The graph on the right, created by Jos Hagelaars, shows that, during the most current cycle, temperatures reached a peak some 7000 years ago (in the blue part of the graph).

The graph underneath, based on work by Marcott et al., focuses on this blue part of the graph, while using a 1961-1990 baseline. Temperatures reached a peak some 7000 years ago, and then came down to reach a low a few hundred years ago.

The peak and the bottom temperatures (highlighted in red on image) over the period suggest a fall of more than 0.7°C.

A few hundred years ago, temperatures were falling and they would have kept falling, in line with the Milankovitch cycles, had there been no warming caused by humans.

From that bottom point, temperatures first rose by about 0.4°C, overwhelming the downward trend that would otherwise have taken temperatures down further, and then there was an additional rise of at least 1.05°C, when using a baseline of 1961-1990. That may suggest that humans have caused a total of 1.45°C warming.

Humans have caused even more warming

The situation looks to be even worse than what the above figures may suggest. Indeed, the bottom low point in the Marcott graph would have been even lower had there been no warming by humans. 

Temperatures before 1900 were already higher than what they would have been had humans caused no warming. The fact that humans did cause substantial warming between 1800 and 1900 is illustrated by the graph below, from a recent post by Michael Mann, who adds that some 0.3°C greenhouse warming had already taken place between the year 1800 and the year 1900.
Some 0.3C greenhouse warming had already taken place by 1900, and some 0.2C warming by 1870
Further studies suggest that humans also caused substantial warming well before 1800, as illustrated by the image on the right. While this study focuses on Europe, it does suggest a rise from 1600 to 1800.

Another example of warming caused by humans before 1800 is presented in research by Dull et al., which suggests that burning of Neotropical forests increased steadily in the Americas, peaking at a time when Europeans arrived in the late fifteenth century. By 1650, some 95% of the indigenous population had perished. Regrowth of forests led to carbon sequestration of some 2 to 5 Pg C, thereby contributing to a fall in atmospheric carbon dioxide recorded in Antarctic ice cores from about 1500 through 1750.

Paris Agreement

NASA data suggest that it was 1.48°C (or 2.664°F) warmer than in 1890-1910 for the period from November 2015 to April 2016. Note again that this 1890-1910 baseline is much later than pre-industrial times. The Paris Agreement had pledged to limit the temperature rise to 1.5°C above pre-industrial levels. On land on the Northern Hemisphere, it was 1.99°C (or 3.582°F) warmer (right map of the image below).

[ Temperature anomalies for the period from November 2015 to April 2016, see also comments ]
The above images only account for a half-year period, so they are only indicative for the total rise for the year 2016. Nonetheless, when taking into account warming caused by people before 1900, the year 2016 looks set to exceed the guardrails that the Paris Agreement had pledged would not be crossed. The situation looks even worse when considering that temperatures measured in ice cores already included a substantial amount of warming due to humans even before the start of the Industrial Revolution.

February 2016 was 1.67°C (3°F) warmer than 1890-1910
Again, at the Paris Agreement nations pledged to hold the increase in the global average temperature to well below 2°C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5°C above pre-industrial levels.

When looking at a single month, February 2016 was 1.67°C (3°F) warmer than 1890-1910 (see image right). When adding a mere 0.34°C to account for warming before 1900, total warming in February 2016 did exceed 2°C. Looking at it that way, the guardrails set in Paris in December 2015 were already crossed in February 2016.

Situation

So, what is the situation? On the one hand, there's the current observed temperature rise (∆O). This rise is typically calculated as the difference between the current temperature and the temperature at a given baseline.

However, this ∆O does not reflect the full impact of human emissions. Temperatures would have been lower had there been no emissions by humans. The full warming impact due to people's emissions therefore is ∆E. This ∆E is higher than the often-used observed rise, since the baseline would have been lower without warming caused by humans.

At the same time, part of global warming caused by people is currently masked due the aerosol emissions (∆A). Such aerosol emissions result from mainly burning of fossil fuel and biomass. There's no doubt that such emissions should be reduced, but the fact remains that the current temperature rise may increase substantially, say, by half when the masking effect disappears.

Thus, the full (unmasked) warming caused by humans is the sum of these two, i.e. ∆E + ∆A, and the sum could be as high as 3°C or even more than 5°C.

In addition, there is a future temperature rise that's already baked into the cake (∆F). Some feedbacks are not yet very noticeable, since some changes take time to become more manifest, such as melting of sea ice and non-linear changes due to feedbacks that are only now starting to kick in. Furthermore, the full effect of CO2 emissions reaches its peak only a decade after emission, while even with the best efforts, humans are likely to still be causing additional emissions over the coming decade. All such factors could jointly result in a temperature rise greater than ∆E + ∆A together, i.e. ∆F could alone cause a temperature rise of more than 5°C within a decade.

In summary, total warming caused by humans (∆E + ∆A + ∆F) could be more than 10°C (18°F) within one decade, assuming that no geoengineering will take place within a decade.

The situation is dire and calls for comprehensive and effective action as described in the Climate Plan.


Links

- Methane Erupting From East Siberian Arctic Shelf
http://arctic-news.blogspot.com/2014/11/methane-erupting-from-east-siberian-arctic-shelf.html

- Jos Hagelaars' graph, created with graphs by Shakun et al., Marcott et al. and more, is at:
https://ourchangingclimate.wordpress.com/2013/03/19/the-two-epochs-of-marcott/

- Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation, by Shakun et al. http://www.nature.com/nature/journal/v484/n7392/full/nature10915.html

- A Reconstruction of Regional and Global Temperature for the Past 11,300 Years, by Marcott et al.
http://science.sciencemag.org/content/339/6124/1198

- The Columbian Encounter and the Little Ice Age: Abrupt Land Use Change, Fire, and Greenhouse Forcing, by Dull et al., in:
https://www.sciencenews.org/article/columbus-arrival-linked-carbon-dioxide-drop

- Arctic Climate Records Melting
http://arctic-news.blogspot.com/2016/05/arctic-climate-records-melting.html

- 2500 Years of European Climate Variability and Human Susceptibility, Ulf Büntgen et al. (2011)

Saturday, April 23, 2016

More and more extreme weather

The weather is getting more and more extreme. On April 23, 2016, temperatures in India were as high as 47.7°C or 117.9°F. At the same time, temperatures in California were as low as -12.6°C or 9.2°F, while temperatures in Greenland were as high as 3.6°C or 38.6°F. Meanwhile, Antarctica was as cold as -60°C or -76°F.


The situation in India is most worrying. Temperatures are very high in many locations. India has been experiencing heatwave conditions for some time now, as reported in this and in this earlier posts.


[ click on images to enlarge ]
More extreme weather goes hand in hand with changes that are taking place to the jet stream, as also discussed in earlier posts (see further below).

As the Arctic warms up more rapidly than the rest of the world, the temperature difference between the Equator and the North Pole decreases, which in turn weakens the speed at which the north polar jet stream circumnavigates the globe. This is illustrated by the wavy patterns of the north polar jet stream in the image on the right.

The outlook for the next week shows the north polar jet stream move higher over the arctic, and to eventually disintegrate altogether, while merging with the subtropical jet stream over the Pacific Ocean.

The video below shows how a very wavy jet stream is projected to disintegrate over the Arctic Ocean over the coming week.


This makes it easier for warm air to move into the Arctic and for cold air to move out of the Arctic, in turn further decreasing the temperature difference between the Equator and the North Pole, in a self-reinforcing feedback loop: "It's like leaving the freezer door open."

Temperature forecasts for the Arctic Ocean are high, with anomalies projected to be above 4°C for the Arctic over the coming week.

The image on the right shows one such forecast, projecting a temperature anomaly of 5.31°C or 9.56°F for the Arctic on April 27, 2016, 1500 UTC, while an earlier forecast projected a 5.34°C or 9.61°F anomaly (hat tip to Mark Williams).

The danger is that the combined impact of high air temperatures and ocean heat will cause rapid demise of Arctic sea ice over the next few months.


On April 22, 2016, the sea surface was as much as 11.3°C or 20.3°F warmer than 1981-2011 (at the location off the coast of North America marked by the green circle).

High ocean heat is further accelerating Arctic sea ice demise, as the Gulf Stream keeps carrying ever warmer water into the Arctic Ocean. The image below, created with an image from the JAXA site, shows that Arctic sea ice extent was well under 13 million kmon April 19, 2016, and about 1 million km less than the extent in the year 2012 around this time of year.


Demise of the sea ice will cause even more rapid warming of the Arctic Ocean, with the danger that more heat will penetrate sediments that contain huge amounts of methane in the form of hydrates and free gas, threatening to trigger huge methane releases and cause runaway warming.

Methane levels are increasing strongly. This may not be as noticeable when taking samples from ground stations, but the rise is dramatic at higher altitudes, as also discussed earlier in this post and in this post.

Methane levels in ppb (parts per billion, at bottom of image)
The conversion table below shows the altitude equivalents in feet, m and mb.

57016 feet44690 feet36850 feet30570 feet25544 feet19820 feet14385 feet 8368 feet1916 feet
17378 m13621 m11232 m 9318 m 7786 m 6041 m 4384 m 2551 m 584 m
 74 mb 147 mb 218 mb 293 mb 367 mb 469 mb 586 mb 742 mb 945 mb

The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan.


Related

- What's wrong with the weather?

Saturday, April 16, 2016

March temperature



Above image shows Land-Ocean (in red) and Land-only (in black) global monthly temperature anomalies compared to the average over the period 1951-1980.

At the Paris Agreement, nations committed to strengthen the global response to the threat of climate change by holding the increase in the global average temperature to well below 2°C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5°C above pre-industrial levels.

To see how much temperatures have risen compared to pre-industrial levels, a comparison with the period 1951-1980 does not give the full picture. The image below, created by selecting a smoothing radius of 1200 km, shows that the global temperature rise from 1890-1910 was 1.58°C or 2.84°F.


The temperature rise is even higher when looking at measurements from land-only stations. The image below compares the March 2016 temperature with the period from 1890-1910 (250 km smoothing), showing a Land-only anomaly of 2.42°C or 4.36°F.


Taking into account that temperatures had already risen by some 0.3°C (0.54°F) before 1900, this adds up to a total temperature rise on land in March 2016 of 2.72°C (4.9°F) from the start of the industrial revolution.

On the Northern Hemisphere, there was an even more dramatic temperature rise on land. In March 2016, on land on the Northern Hemisphere, it was 4.9°F or 2.72°C warmer than the 20th century average, as illustrated by the image below.

How much of this rise can be attributed to El Niño? One way to answer this question is by adding a polynomial trend, as in the March Northern Hemisphere Land Temperature Anomaly image below, showing that temperatures had already risen by 2°C in March 2015, while pointing at a rise of 4°C by March 2030 and 10°C before the year 2050.


The trendline also shows that a temperature difference of about half a degree Celsius between the 20th century average and the year 1900. Taking into account that temperatures had already risen by some 0.3°C (0.54°F) before 1900, this adds up to a total temperature rise on land on the Northern Hemisphere in March 2016 of 3.52°C or 6.34°F from the start of the industrial revolution.

NOAA data show that in March 2016, it was 2.33°C or 4.19°F warmer on land globally than the 20th century average. When compared to temperatures around the year 1900, it was even warmer.

In February 2016, NASA data show that it was 2.33°C or 4.19°F warmer on land (with 1200 km smoothing) than it was in 1890-1910, while it was 2.48°C or 4.46°F warmer for a 250 km smoothing radius for the land-only data. In an earlier post, a 2.3°C rise in February 2016 was used as one of several elements making up the total rise that could eventuate on land by the year 2026, assuming that no geoengineering will take place (image below).


Meanwhile, the current El Niño is still going strong and causing very high temperatures, making one wonder how high temperatures will be during the next El Niño, which could eventuate a decade or less from now. The image below shows high temperatures at four locations in South-East Asia on April 20, 2016.



The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.

Sunday, March 13, 2016

February Temperature


The February 2016 land and ocean temperature anomaly was 1.35°C (2.43°F) above the average temperature in the period from 1951 to 1980, as above image shows (Robinson projection).

On land, it was 1.68°C (3.02°F) warmer in February 2016, compared to 1951-1980, as the image below shows (polar projection).


The image below combines the above two figures in two graphs, showing temperature anomalies over the past two decades.


Below are the full graphs for both the land-ocean data and the land-only data. Anomalies on land during the period 1890-1910 were 0.61°C lower compared to the period from 1951 to 1980, which is used as a reference to calculate anomalies. The blue line shows land-ocean data, while the red line shows data from stations on land only.


At the Paris Agreement, nations committed to strengthen the global response to the threat of climate change by holding the increase in the global average temperature to well below 2°C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5°C above pre-industrial levels.

To see how much temperatures have risen compared to pre-industrial levels, a comparison with the period 1951-1980 does not give the full picture. The image below compares the February 2016 temperatures with the period from 1890 to 1910, again for land only.


Since temperatures had already risen by ~0.3°C (0.54°F) before 1900, the total temperature rise on land in February 2016 thus is 2.6°C (4.68°F) compared to the start of the industrial revolution.

There are a number of elements that determine how much the total temperature rise on land will be, say, a decade from now:

Rise 1900-2016: In February 2016, it was 2.3°C (4.14°F) warmer on land than it was in 1890-1910.

Rise before 1900: Before 1900, temperature had already risen by ~0.3°C (0.54°F), as Dr. Michael Mann points out (see earlier post).

Rise 2016-2026: If levels of carbon dioxide and further greenhouse gases do keep rising, there will additional warming over the next ten years. Even with dramatic cuts in carbon dioxide emissions, temperatures can keep rising, as maximum warming occurs about one decade after a carbon dioxide emission, so the full wrath of the carbon dioxide emissions over the past ten years is still to come. Moreover, mean global carbon dioxide grew by 3.09 ppm in 2015, more than in any year since the record started in 1959, prompting an earlier post to add a polynomial trendline that points at a growth of 5 ppm by 2026 (a decade from now). This growth took place while global energy-related CO2 emissions have hardly grown over the past few years, indicating that land and oceans cannot be regarded as a sink, but should be regarded as source of carbon dioxide. On land, carbon dioxide may be released due to land changes, changes in agriculture, deforestation and extreme weather causing droughts, wildfires, desertification, erosion and other forms of soil degradation. Importantly, this points at the danger that such emissions will continue to grow as temperatures keep rising. New studies on permafrost melt (such as this one and this one) show that emissions and temperatures can rise much faster in the Arctic than previously thought. Furthermore, a 2007 study found a 25% soil moisture reduction to result in 2°C warming. Altogether, the rise over the next decade due to such emissions may be 0.2°C or 0.36°F (low) to 0.5°C or 0.9°F (high).

Removal of aerosols: With the necessary dramatic cuts in emissions, there will also be a dramatic fall in aerosols that currently mask the full warming of greenhouse gases. From 1850 to 2010, anthropogenic aerosols brought about a decrease of ∼2.53 K, says a recent paper. In addition, more aerosols are likely to be emitted now than in 2010, so the current masking effect of aerosols may be even higher. Stopping aerosol release may raise temperatures by 0.4°C or 0.72°F (low) to 2.5°C or 4.5°F (high) over the next decade, and when stopped abruptly this may happen in a matter of weeks.

Albedo change: Warming due to Arctic snow and ice loss may well exceed 2 W per square meter, i.e. it could more than double the net warming now caused by all emissions by people of the world, as Professor Peter Wadhams calculated in 2012. The temperature rise over the next decade due to albedo changes as a result of permafrost and sea ice decline may be 0.2°C or 0.36°F (low) to 1.6°C or 2.9°F (high).

Methane eruptions from the seafloor: ". . . we consider release of up to 50 Gt of predicted amount of hydrate storage as highly possible for abrupt release at any time," Dr. Natalia Shakhova et al. wrote in a paper presented at EGU General Assembly 2008. Authors found that such a release would cause 1.3°C warming by 2100. Such warming from an extra 50 Gt of methane seems conservative when considering that there now is only some 5 Gt of methane in the atmosphere, and over a period of ten years this 5 Gt is already responsible for more warming than all the carbon dioxide emitted by people since the start of the industrial revolution. The temperature rise could be higher, especially in case of large abrupt release, but in case of small and gradual releases much of the methane may be broken down over the years. The temperature rise due to seafloor methane over the next decade may be 0.2°C or 0.36°F (low) to 1.1°C or 2°F (high).

Water vapor feedback:
 "Water vapour feedback acting alone approximately doubles the warming from what it would be for fixed water vapour. Furthermore, water vapour feedback acts to amplify other feedbacks in models, such as cloud feedback and ice albedo feedback. If cloud feedback is strongly positive, the water vapour feedback can lead to 3.5 times as much warming as would be the case if water vapour concentration were held fixed", according to the IPCC. In line with the above elements, this may result in a temperature rise over the next decade of 0.2°C or 0.36°F (low) to 2.1°C or 3.8°F (high).

The image below puts all these elements together in two scenarios, one with a relatively low temperature rise of 3.9°C (7.02°F) and another one with a relatively high temperature rise of 10.4°C (18.72°F).


Note that the above scenarios assume that no geoengineering will take place.

The 2.3°C warming used in above image isn't the highest figure offered by the NASA site. An even higher figure of 2.51°C warming can be obtained by selecting a 250 km smoothing radius for the on land data.

When adding the 0.3°C that temperatures rose before 1900, the rise from the start of the industrial revolution is 2.81°C (5.06°F), as illustrated by the image on the right.

The image also shows that this is the average rise. At specific locations, it is as much as 16.6°C (30°F) warmer than at the start of the industrial revolution.

Furthermore, temperatures are higher on the Northern Hemisphere than on the Southern Hemisphere. This is illustrated by the image below showing NASA temperature anomalies for January 2016 (black) and February 2016 (red) on land on the Northern Hemisphere. The data show that it was 2.36°C (4.25°F) warmer in February 2016 compared to 1951-1980.


How much of the rise can be attributed to El Niño? The added trendlines constitute one way to handle variability such as caused by El Niño and La Niña events and they can also indicate how much warming could be expected to eventuate over the years to come.

The February trendline also indicates that the temperature was 0.5°C lower in 1900 than in 1951-1980, so the total rise from 1900 to February 2016 is 2.86°C (5.15°F). Together with a 0.3°C rise before 1900, this adds up to a rise on land on the Northern Hemisphere of 3.16°C (5.69°F) from pre-industrial levels to February 2016. Most people on Earth live on land on the Northern Hemisphere. In other words, most people are already exposed to a temperature rise that is well above any guardrails that nations at the Paris Agreement pledged would not be crossed.


Temperatures may actually rise even more rapidly than these trendlines indicate. As above image illustrates, the largest temperature rises are taking place in the Arctic, resulting in a rapid decline of snow and ice cover and increasing danger that large methane eruptions from the seafloor will take place, as illustrated by the image on the right, from an earlier post. This could then further lead to more water vapor, while the resulting temperature rises also threaten to cause more droughts, heatwaves and wildfires that will cause further emissions, as well as shortages of food and fresh water supply in many areas.

Adding the various elements as discussed above indicates that most people may well be hit by a temperature rise of 4.46°C or 8.03°F in a low rise scenario and of 10.96°C or 19.73°F in a high rise scenario, and that would be in one decade from February 2016. Since it is now already March 2016, that is less than ten years from now.

The image below shows highest mean methane readings on one day, i.e. March 10, over four years, i.e. 2013, 2014, 2015 and 2016, at selected altitudes in mb (millibar). The comparison confirms that the increase of methane in the atmosphere is more profound at higher altitudes, as discussed in earlier posts. This could indicate that methane from the Arctic Ocean is hardly detected at lower altitudes, as it rises in plumes (i.e. very concentrated), while it will then spread and accumulate at higher altitudes and at lower latitudes.


The conversion table below shows the altitude equivalents in mb, feet and m.

57016 feet44690 feet36850 feet30570 feet25544 feet19820 feet14385 feet 8368 feet1916 feet
17378 m13621 m11232 m 9318 m 7786 m 6041 m 4384 m 2551 m 584 m
 74 mb 147 mb 218 mb 293 mb 367 mb 469 mb 586 mb 742 mb 945 mb

Meanwhile Arctic sea ice area remains at a record low for the time of the year, as illustrated by the image below.


Next to rising surface temperatures in the Arctic, ocean temperature rises on the Northern Hemisphere also contribute strongly to both Arctic sea ice decline and methane releases from the seafloor of the Arctic Ocean, so it's important to get an idea how much the Northern Hemisphere ocean temperature can be expected to rise over the next decade. The NOAA image below shows a linear trend over the past three decades that is rising by 0.19°C per decade.

The image below, using the same data, shows a polynomial trend pointing at a 1.5°C rise in ocean temperature on the Northern Hemisphere over the next decade.


Below is an interactive version of the graph.
The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.



There are a number of elements that determine how much the total temperature rise on land will be, say, a decade from...
Posted by Sam Carana on Sunday, March 13, 2016